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In the past,H was considered as a basic field in electromagnetism andB as a derived quantity. In modern
times the inverse situation prevails. We discuss the advantages and disadvantages of these possibilities and we
develop for Maxwell’s equations a manifestly covariant formalism usingE andH as primary fields andD and
B as derived quantities.@S1063-651X~96!08310-9#

PACS number~s!: 03.50.2z

I. B VERSUS H

In order to obtain a determinate system of equations for
the fields appearing in Maxwell’s equations whereE,D,B,H
are the usual components of the electromagnetic field,r the
density of charge, andJ the vector current,

c“3E1] tB50, “•B50, ~1a!

c“3H2] tD5cJ, “•D5r, ~1b!

it is necessary to append certain constitutive relations, the
form of which is dependent upon the nature of the material in
which the electric and the magnetic fields occur. For in-
stance, in a rigid, linear, stationary, nonconducting dielectric,
constitutive relations as given by Maxwell@1# are

D5«•E, B5m•H. ~2!

«,m are the permittivity and the permeability tensors and
these relations imply thatE,H are basic fields,D,B, derived
quantities. The relations~2! are consistent with the fact@2#
that the magnetic inductionB plays a role in magnetic phe-
nomena analogous to that of the displacement vectorD in
electrical phenomena and that the magnetic field strength
vectorH can be defined as the mechanical force which the
magnetic field exerts on a fictitious magnetic monopole~a
best definition ofH is obtained in terms of Ampe`re’s law!.
Nowadays people write

D5«•E, H5m21
•B, ~2a!

making ofB a basic field.
As long as constitutive relations keep the previous simple

forms, the difference between~2! and ~2a! is semantic but
not in more general media~think of ferromagnetism!. So it is
interesting to analyze the reasons leading one to prefer~2a!.

First the manifestly covariant description of electromag-
netism used in relativity@3# needs two antisymmetric tensors
Fmn~E,B! andGmn~D,H! ~m,n50,1,2,3!, and Maxwell’s equa-
tions read

]mFmn50, ]mGmn5Jn . ~3!

Fmn is the dual tensor12«mnabF
ab, where«mnab is the permu-

tation tensor andJm the four vector~J,r!. The general cova-
riant linear constitutive relations are@4#

Gmn5xmnabFab , ~4!

where xmnab is a tensor with 21 independent components
making clear that in this formalismE andB are the basic
fields.

A second reason often put forward@3# is that Eqs.~1a!
can be solved formally by expressingE andB in terms of
potential functions while Eqs.~1b! cannot be solved until the
derived fieldsD,H are known in terms ofE andB. Let us
now dispose of this argument on the simple example of an
isotropic medium moving uniformly along thez axis with
the velocityu.

We first assume that in the rest frame the constitutive
relations have the form~2! ~«,m are now scalar!,

D85«E8, B85mH8. ~5!

Using the transformations of electromagnetic fields under a
Lorentz boost~see Appendix A! the relations~5! become in
the laboratory frame@5#

D5«LE1Nu3H,

B5mLH2Nu3E. ~6!

We use the following notations. Any fieldA is decomposed
into the direct sum of a 2D transverse componentAT and of
a longitudinal componentAz along z: A5AT%Az and I
denotes the 2̂2 identity matrix~n25«m, b25u2c22!:

L5~12b2!~12n2b2!21I %1,

N5~n221!~12b2n2!21I %0. ~7!

Substituting~6! into ~1! gives the equations

c“3E1mL] tH2N] tu`E50,

m“•LH2“•Nu`E50,

c“3H2«L] tH2N] tu`H5J,

«“•LE1“•Nu`H5r, ~8!

and recently Tai @6# using the pseudotime variable
t5t1bc21nz, wheren is the coefficient ofI and the defi-
nition ~7! of N was able to put these equations in a form that
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can be solved by conventional methods providing a simple
and elegant solution of Eqs.~8!.

Let us now take~2a! as constitutive relations in the rest
frame

D85«E8, H85kB8, k5m21. ~9!

These relations become in the laboratory frame

D5«KdE1K ~u3B!,

H5kKhB1K ~u3E!, ~10!

Kd5~12b2n22!~12b2!21I %1,

Kh5~12b2n2!~12b2!21I %1,

K5~12b2!21I %0. ~10a!

Maxwell’s equations~1a! are left unchanged and can be
solved in terms of potential functions while substituting~10!
into ~1b! gives ~1z is a unit vector in thez direction!

c“3KhB2Kd] tE2a~c]2E2c1z“•E11z] tB!5J,

“•KdE2a~“3B!z5r, a5~«2k!~12b2!21b,
~11!

but there is no simple solutions of Eqs.~11! because they
depend on three operatorsKd ,Kh ,K instead of twoL,N for
Eqs.~8!.

This result shows that in this problemH should be con-
sidered as the basic component and dismisses the second
argument in favor ofB. There is no guarantee that the formal
solution of Eqs.~1a! in terms of potential functions would
make easier the general solution of Maxwell’s equations.

Then, to dispose of the first argument in favor ofB as the
basic field we have still to prove that there exists a mani-
festly covariant formalism of electromagnetism usingE and
H as basic fields.

II. MANIFESTLY COVARIANT DESCRIPTION
OF MAXWELL’S EQUATIONS

We introduce two antisymmetric tensors
Fmn8 (E,B),Gmn8 (D,B) obtained by exchangingH and B in
the usual tensorsFmn andGmn . Then, we consider the self-
dual tensors

Kmn5Fmn8 1~ i /2!«mnabF8ab,

Lmn5Gmn8 1~ i /2!«mnabG8ab. ~12!

whose components are, respectively, the complex vectors
P5E1iH, Q5D1iB ( i5A21). More precisely,

Pj5K0 j52Kj05~ i /2!« jklK
kl,

Qj5L0 j5L j05~ i /2!« jklL
kl. ~13!

In these relations, which follow from the isomorphism be-
tween the Lorentz group and the 3D complex rotation group
@7#, the latin indices take the values 1, 2, 3, and«i jk is the

permutation tensor. Note that the real part of the vectorsP,Q
is a polar vector while the imaginary part is an axial vector.

The summation of Eqs.~1a! with Eqs.~1b! multiplied by
i gives

ic“3P1] tQ52cJ, “•Q5r ~14!

and to write~14! in a manifestly covariant form we introduce
the antisymmetric tensorMmn with the components

M0m5L0m , Mm05Lm0 , Mi j5Ki j , ~15!

that is,

Mmn5U 0
Qx

Qy

Qz

2Qx

0
2 iPz

iPy

2Qy

iPz

0
2 iPx

Qz

2 iPy

iPx

0
U ~15a!

and the two four vectors

]m5~] j ,] t!, Jm5~Jj ,r!. ~16!

It is easy to check that Eqs.~14! take the simple form dis-
cussed in Appendix B,

]nMmn52Jm , ~17!

which is an alternative manifestly covariant description of
electromagnetism. The general linear covariant constitutive
relations can be imposed in a similar way to~4!,

G8mn5jmnabFab8 ~18!

and the tensorj has the same symmetry properties as the
tensork.

III. CONCLUSION

A definitive answer to the question of consideringB or H
as a basic component is difficult to assess and depends prob-
ably on the physical process under discussion. For instance,
in ferromagnetism where the relation betweenB andH is a
nonlinear functionalB5f ~H! ~hysteresis loop!, H is the
natural basic quantity. Similarly the example discussed in
Sec. I suggests the same conclusion for chiral media. At the
oppositeB plays the role of basic field in a process requiring
the Lorentz force but one must takeH as fundamental for the
Ampère force. In some cases there may exist some doubts;
for instance@2#, the question of whetherH or B is the vector
to be used for the mechanical force exerted by a magnetic
field on magnetized matter has been only partly answered
@8#.

Generally calculations are easier when mathematics and
physics share the same symmetries. A good example is pro-
vided by the Tai result. So it is important to use in the con-
stitutive relations the physically fundamental fields. In addi-
tion, whenH is the basic field, the 3D complex formalism
used in Sec. II performs very well. We were able, for in-
stance, to simplify somewhat Tai’s expressions and to extend
his result to bi-isotropic Tellegen media.
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APPENDIX A

The components of the electromagnetic field in two
frames moving apart with the relative uniform velocityu
along 0z satisfy the relations@9#

E85K0~E1u3B!, B85K0~B2u3E!,

D85K0~D1u3H!, H85K0~H2u3D!, ~A1!

K05~12b2!21/2I %1. ~A2!

APPENDIX B

One checks easily that Eq.~17! supplies the continuity
condition]mJm50. Now letZm5Xm1 iYm be a complex po-
tential andMmn5]mZn2]nZm . Imposing the generalized
Lorentz condition]mZm50, we get from~17! the equations

]n]nXm5Jm , ~B1a!

]n]nYm50. ~B1b!

Using the Green’s function allows us to solve formally the
inhomogeneous wave equation~B1a!. For instance, in free
space

Xm~x,t !5E d~ t2t82ux2x8u/c!ux2x8u21

3Jm~x8,t8!d3x8dt8, ~B2!

whered is the Dirac distribution. The solution of the homo-
geneous wave equation~B1b! is obtained by the usual meth-
ods depending on the problem under discussion.

From the definition ofMmn andZm we get

Bj52]0Yj2] jY0 ~B3!

so that using the Lorentz condition]mYm50 and the equation
~B1b! one checks easily that the divergence equation~1a! is
satisfied. Note that in this covariant formalism the Lorentz
condition is a necessary condition.

Finally Eq. ~17! may be obtained from the covariant La-
grangian,

L5$1/32pMmnM
mn21/2cJmZm%1$c.c.%, ~B4!

where$c.c.% denotes the complex conjugate of the quantities
inside the preceding bracket. This covariant formalism of
electromagnetism could be of interest in quantum field
theory.
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