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B or H as the basic field in electromagnetism
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Institut Henri Poincare 86 Bis Route de Croissy, 78110 Lésifet, France
(Received 3 June 1996

In the pastH was considered as a basic field in electromagnetismBaad a derived quantity. In modern
times the inverse situation prevails. We discuss the advantages and disadvantages of these possibilities and we
develop for Maxwell’'s equations a manifestly covariant formalism u&randH as primary fields an® and
B as derived quantitie$S1063-651X96)08310-9

PACS numbd(s): 03.50-z
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In order to obtain a determinate system of equations fowhere y***# is a tensor with 21 independent components
the fields appearing in Maxwell's equations wh&®,B,H making clear that in this formalisrk and B are the basic
are the usual components of the electromagnetic fiethe  fields.

density of charge, and the vector current, A second reason often put forwaf8] is that Egs.(1a
can be solved formally by expressitgand B in terms of
CVXE+4B=0, V-B=0, (18  potential functions while Eq€1b) cannot be solved until the
derived fieldsD,H are known in terms oE andB. Let us
cVXH-¢,D=cJ, V-D=p, (1b) now dispose of this argument on the simple example of an

isotropic medium moving uniformly along the axis with
it is necessary to append certain constitutive relations, thehe velocityu.

form of which is dependent upon the nature of the material in  \We first assume that in the rest frame the constitutive
which the electric and the magnetic fields occur. For in-relations have the forn2) (e, are now scaldr

stance, in a rigid, linear, stationary, nonconducting dielectric,

constitutive relations as given by Maxwé¢l] are D'=¢E’, B'=uH’. 5)

D=¢-E, B=pu-H. (2) Using the transformations of electromagnetic fields under a
Lorentz boosisee Appendix Athe relationg5) become in
g,;u are the permittivity and the permeability tensors andthe laboratory framg5]
these relations imply thd,H are basic fieldsD,B, derived

guantities. The relation&) are consistent with the fa¢g] D=e¢AE+NuxH,
that the magnetic inductioB plays a role in magnetic phe-
nomena analogous to that of the displacement vebtan B=uAH—-NuXxE. (6)

electrical phenomena and that the magnetic field strength _ _ o
vectorH can be defined as the mechanical force which théVe use the following notations. Any field is decomposed
magnetic field exerts on a fictitious magnetic monop@e into the direct sum of a 2D transverse compongptand of

best definition oH is obtained in terms of Ampe’s law). @ longitudinal componenk, along z: - A=A7©A, and|

Nowadays people write denotes the @2 identity matrix(n>=eu, fZ=u?c™?):
D=¢-E, H=pu 1.B, (23 A=(1-p5(1-n*p5) a1,

making of B a basic field. N=(n’-1)(1-8?n?>) "1 ®0. (7

As long as constitutive relations keep the previous simple o _ _ .
forms, the difference betwee(2) and (2a) is semantic but  Substituting(6) into (1) gives the equations
not in more general medighink of ferromagnetism So it is

interesting to analyze the reasons leading one to pt@gr CVXE+uAdH—-NGUNE=0,
First the manifestly covariant description of electromag-
netism used in relativity3] needs two antisymmetric tensors V- AH=V-NuAE=0,
F,.(E,B) andG ,,(D,H) (1,»=0,1,2,3, and Maxwell's equa-
tions read CVXH_SAﬁtH_NﬁtU/\H:J,
*F,,=0, 9G,,=J,. (3 eV-AE+V-NuAH=p, (8)

F ., is the dual tensoéswaﬂF“"’, wheree,,, .z is the permu-  and recently Tai[6] using the pseudotime variable
tation tensor and , the four vector(J,p). The general cova- r=t+ B¢ lvz, wherev is the coefficient ofl and the defi-
riant linear constitutive relations aféd] nition (7) of N was able to put these equations in a form that
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can be solved by conventional methods providing a simplgpermutation tensor. Note that the real part of the ved®@s

and elegant solution of Eq$3). is a polar vector while the imaginary part is an axial vector.
Let us now take(2a) as constitutive relations in the rest ~ The summation of Eqg1a) with Egs.(1b) multiplied by
frame i gives
D'=¢E', H'=«B', k=p"". (9) icVXP+4,Q=—cJ, V-Q=p (14)

These relations become in the laboratory frame and to write(14) in a manifestly covariant form we introduce

D=eKE+K(UXB), the antisymmetric tensavl ,, with the components

H=xK,B+K(uxE), (10) Mou=Lou» Muo=Luo, M=K, (15)
Kd=(1—,82n_2)(1—,82)_1l@1, thatis,
Kn=(1-p%%)(1- 2 el 0 ~Q ~Q
M. — Qy 0 iP, —iPy (153
K=(1-p%"te0. (103 Bro1Qy —iP, 0 iPy
Q, Py, —iP, O

Maxwell's equations(1a) are left unchanged and can be
solved in terms of potential functions while substitutitig) and the two four vectors
into (1b) gives(1, is a unit vector in the direction
3,=(9;,0), I,=(Jj.p). (16)
cV X KhB_ Kd(?tE_ a’(CazE_ Cle -E+ lz(th) :J,
It is easy to check that Eq$14) take the simple form dis-
V-K4E—a(VXB),=p, a=(s—:<)(1—/32)_1,6’,( ) cussed in Appendix B,
11

. . . M ,,=—J,, 1
but there is no simple solutions of Eg4d.1) because they e # (17

depend on three operatakg Ky K instead of twoA,N for which is an alternative manifestly covariant description of

Egs.(8). . ; . S
. . . electromagnetism. The general linear covariant constitutive
This result shows that in this problebh should be con- redations cgan be imposeg in a similar way(®

sidered as the basic component and dismisses the secon
argument in favor oB. There is no guarantee that the formal
solution of Egs.(1a in terms of potential functions would
make easier the general solution of Maxwell’'s equations.
Then, to dispose of the first argument in favorBoas the

G Hr=gurabE . (19

and the tensog has the same symmetry properties as the

basic field we have still to prove that there exists a mani{eNSOr«-
festly covariant formalism of electromagnetism usb@nd
H as basic fields. [Il. CONCLUSION

A definitive answer to the question of consideriBgr H

Il. MANIFESTLY COVARIANT DESCRIPTION as a basic component is difficult to assess and depends prob-

OF MAXWELL'S EQUATIONS ably on the physical process under discussion. For instance,
We introduce two antisymmetric tensors In ferromagnetism where the relation betwdmandH is a
F;V(E,B),G;V(D,B) obtained by exchangingl and B in nonlinear functionalB=f(H) (hysteresis loop H is the

; natural basic quantity. Similarly the example discussed in
the usual tensork ,, andG,,,. Then, we consider the self- s I q h y Iy ion f hP | - h
dual tensors ec. | suggests the same conclusion for chiral media. At the

oppositeB plays the role of basic field in a process requiring

Kuw=FL,+(12)& 4,05F the Lorentz force but one must takeas fundamental for the
# Y a Ampere force. In some cases there may exist some doubts;
LW:G;”JF(”Z)SMWBGW@ (12) for instancd 2], the question of whethet or B is the vector

to be used for the mechanical force exerted by a magnetic
whose components are, respectively, the complex vectorf$e]|d on magnetized matter has been only partly answered
8].

P=E+iH, Q=D+iB (i=+—1). More precisely, . , )
Generally calculations are easier when mathematics and

P;=Kgj=— Kjoz(ilz)gjlekl, physics share the same symmetries. A good example is pro-
vided by the Tai result. So it is important to use in the con-
Qj=Loj= Ljoz(i/z)gjlekl_ (13 stitutive relations the physically fundamental fields. In addi-

tion, whenH is the basic field, the 3D complex formalism
In these relations, which follow from the isomorphism be-used in Sec. Il performs very well. We were able, for in-
tween the Lorentz group and the 3D complex rotation grougstance, to simplify somewhat Tai's expressions and to extend
[7], the latin indices take the values 1, 2, 3, ang is the  his result to bi-isotropic Tellegen media.
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APPENDIX A

The components of the electromagnetic field in two

frames moving apart with the relative uniform velocity
along @ satisfy the relation$9]

E'=Ko(E+uXB), B'=Ky(B—uxE),

D'=Ko(D+uxH), H' =Ko(H—uxD), (Al)

Ko=(1-8%> YAae1. (A2)

APPENDIX B

One checks easily that Eq17) supplies the continuity
conditioné“J,,=0. Now letZ,= X, +iY , be a complex po-
tential andM ,,=d,Z,—4d,Z,. Imposing the generalized
Lorentz conditiond“Z =0, we get from(17) the equations

(Bla)
(B1b)

9"9,X,=3,,

39"3,Y,=0.

Using the Green’s function allows us to solve formally theinside the preceding bracket.

inhomogeneous wave equatigBla). For instance, in free
space

PIERRE HILLION

XM(x,t)=J S(t—t' —|x—x'|/c)|x—x'| ?

XJ,(x' t)d3 dt’, (B2)
whered is the Dirac distribution. The solution of the homo-
geneous wave equati@Blb) is obtained by the usual meth-
ods depending on the problem under discussion.
From the definition oM ,, andZ, we get
so that using the Lorentz conditieY ,=0 and the equation
(B1b) one checks easily that the divergence equatia is
satisfied. Note that in this covariant formalism the Lorentz
condition is a necessary condition.
Finally Eq.(17) may be obtained from the covariant La-
grangian,

L={1/327M , M**—1/2cI*Z }+{c.c},  (BY)
where{c.c} denotes the complex conjugate of the quantities
This covariant formalism of
electromagnetism could be of interest in quantum field
theory.
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